METOC and Naval Afloat Operations: Risk Management, Safety, and Readiness

LCDR Brett Martin Naval Postgraduate School

Advisor: Prof. Tom Murphree Co-Advisor: Carlyle Wash December 2003

Study Goals

Identify METOC related afloat mishaps, their costs, and possible methods for reducing the impacts of these mishaps on fleet readiness.

- 1. Direct Costs
- Lives Lost
- Dollars Lost
- Labor Lost

- 2. Indirect Costs
- Loss of Readiness
- Investigation Costs
- Litigation Costs
- Damage to Reputation

Data and Methods

8000 class A, B, and C afloat mishap reports, Mar 1997 – March 2002, from Naval Safety Center

Mishap records used to identify:

- 1. METOC related mishaps (MRMs)
- 2. costs of these mishaps
- 3. phenomena & operating conditions during mishaps

Most reports provided only a general narrative description of METOC phenomena and operating conditions.

METOC Related Mishaps (MRMs)

In an MRM, one or more of the following occurred:

- 1. METOC phenomena significantly increased risks. Exs:
 - High winds/seas
 - Tides and currents
- 2. METOC related operational deficiencies increased risks. Exs:
 - Breakdown in risk management
 - Lack of forecast
 - Communication breakdown
 - Lack of training and/or competence

Identification of MRMs

Identified MRMs using the "Practical Man" Test.

- > Yes, No, Maybe
- > PMT requires qualified analyst to conduct test.
 - > Surface Warfare Officer
 - > Afloat Safety Officer
 - > METOC Officer
- > Received second opinions from other Naval officers.

Analysis Approach: Practical Man Test

Potential Chain of Events for METOC Related Mishaps

Potential Chain of Events for METOC Related Mishaps

METOC Aspects of Naval Afloat Safety
Thesis Research by LCDR Brett Martin, USN
Naval Postgraduate School
Advisors: Professors Tom Murphree and Chuck Wash

METOC Aspects of Naval Afloat Safety
Thesis Research by LCDR Brett Martin, USN
Naval Postgraduate School
Advisors: Professors Tom Murphree and Chuck Wash

METOC Related Mishaps

166 mishaps during the 5 year period were METOC related.

Deaths Due to METOC Related Mishaps

A total of 7 crew members killed during the 5 years, for an average of 1.5 deaths per year

METOC Related Mishaps Resulting in Personal Injury

132 (80%) of the 166 METOC related mishaps involved personal injury.

Lost Work Days Due to METOC Related Mishaps

Total lost work days over 5 years: 2707, for an average of 540 days per year.

Light Duty Days Due to METOC Related Mishaps

Total light duty days over 5 years: 1757, for an average of 350 days per year.

Average Light and Lost Duty Days Per METOC Related Mishaps

Total of 2.5 people on light or lost duty status per day during 5-year period due to MRMs.

Average Damage Per METOC Related Mishap

Average cost per MRM: \$54,200.

Operation Type Involved in METOC Related Mishaps

25% of METOC related mishaps involved POVs.

Small Boat METOC Related Mishaps

Note: All of these mishaps involved ship-owned small boats.

Impacts of Small Boat MRMs

Number of Deaths	0		
Number of Injuries		12	
Amputations		1	
Fractures		3	
Back Injuries		3	
Soft Tissue	5		
Lost Duty Days	14% of MRM total	381	
Light Duty Days	22% of MRM total	378	
Equipment Costs	\$15,000		

Small boat mishaps have a very high labor cost: over 750 days of lost or light duty in last 5 years!

For official use only

Groupings of Phenomena Involved in METOC Related Mishaps

High Winds and Seas
Rain
Ice & Snow
High Winds
Tropical Cyclone
Tide
Fog

This grouping of phenomena is based primarily on the terms used in the mishap reports.

Phenomena Involved in METOC Related Mishaps

Major phenomena: High winds/seas for all mishap classes; rain for personal vehicle mishaps.

High winds/seas message is not getting out!
Or if it is, it is not being understood, or people are not properly trained to deal with these phenomena.

Tropical Cyclone Related Mishaps

	1997	1998	1999	2000	2001	Basin Total
NW Atlantic	2	1	5	0	0	8
NW Pacific	4	0	0	1	0	5
SW Pacific	1	1	0	0	0	2
Other Basins	0	0	0	0	0	0
Annual Total	7	2	5	1	0	15

Mishap reports identified only 5 TC related mishaps. Supplemental TC best track data revealed that 15 (9%) of the 166 MRMs were TC related.

Tropical Cyclone Related Mishaps

TC Track Forecast Errors, NW Pacific, 1990-2001

SAFA = Systematic Approach Forecasting Aid, developed and applied at NPS and JTWC

Mishaps That Would Not Have Happened in a Benign Environment

Was a METOC Forecast Provided for METOC Related Mishap?

For 133 (80%) of the 166 MRMs, we could not determine if a forecast was provided.

Was a METOC Brief Provided for METOC Related Mishap?

For official use only

For 143 (86%) of the 166 MRMs, we could not determine if a brief was given.

METOC Related Mishaps Involving Training Deficiencies

84% of MRMs involved inadequate training on how to assess, manage, and/or operate in adverse phenomena.

Were Appropriate Procedures Followed for Dealing With METOC Phenomena?

Challenges of This Study

- > Relatively little METOC information is included in even very well written afloat MRs and MIRs
- Many afloat MRs and MIRs are under-reported. Thus, they do not give a full accounting of the nature of the mishaps or their true costs.

Challenges of This Study

It appears that under-reporting is done in order to:

- > understate the true costs (e.g., in personnel injuries, equipment damage, lost labor, lost dollars, etc.)
- minimize or diffuse responsibility for the mishaps
- protect careers
- ➤ It appears that some mishaps go unreported (i.e., not reported at all).
- The true costs of under-reported or unreported mishaps may be hidden within general operating expenses.

Key Findings

Mishap reports need expanded operator and METOC data. Model: aviation mishap reporting.

Supplemental METOC info can fill some data gaps.

Under-reporting of mishaps appears to be significant.

METOC products often not available:

- -- in operator ready form
- for some evolutions

Lack of training in assessing and managing METOC risks is a major factor in afloat MRMs.

For official use only

Products From This Study

- 1. Developed database of METOC related afloat mishaps.
- 2. Identified & developed METOC related training modules for afloat community.
- 3. Developed METOC related ORM metrics for METOC and Afloat communities (including OTSR analysis conducted by LCDR Hinz, NLMOC).
- 4. Developed data sets and system for METOC impacts assessments.
- 5. Developed and delivered recommendations to METOC, Afloat, and Safety communities.

 METOC, Afloat, and Safety communities.